Band-gap engineering in two-dimensional periodic photonic crystals

نویسنده

  • Manvir S. Kushwaha
چکیده

A theoretical investigation is made of the dispersion characteristics of plasmons in a twodimensional periodic system of semiconductor (dielectric) cylinders embedded in a dielectric (semiconductor) background. We consider both square and hexagonal arrangements and calculate extensive band structures for plasmons using a plane-wave method within the framework of a local theory. It is found that such a system of semiconductor-dielectric composite can give rise to huge full band gaps (with a gap to midgap ratio ≈ 2) within which plasmon propagation is forbidden. The most interesting aspect of this investigation is the huge lowest gap occurring below a threshold frequency and extending up to zero. The maximum magnitude of this gap is defined by the plasmon frequency of the inclusions or the background as the case may be. In general we find that greater the dielectric (and plasmon frequency) mismatch, the larger this lowest band-gap. Whether or not some higher energy gaps appear, the lowest gap is always seen to exist over the whole range of filling fraction in both geometries. Just like photonic and phononic band-gap crystals, semiconducting band-gap crystals should have important consequences for designing useful semiconductor devices in solid state plasmas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals

In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...

متن کامل

A Novel Structure for Optical Channel Drop Filter using Two-Dimensional Photonic Crystals with Square Lattice

In the present paper a novel structure for optical channel drop filter (CDF) based on photonic crystal ring resonator with circular core has been proposed. In order to design the proposed CDF, the plan wave expansion (PWE) method is applied for calculation of band structure and photonic band gap while the transmission characteristics of proposed CDF have been calculated using the finite differe...

متن کامل

A New Method for Calculating Propagation Modes of a One Dimensional Photonic Crystal (RESEARCH NOTE)

Photonic band-gap (PBG) crystals offer new dimensions of freedom in controlling propagation of electromagnetic waves. The existence of stop-bands in the transmission characteristic of these crystals makes them a suitable element for the realization of many useful microwave and optical subsystems. In this paper, we calculate the propagation constant of a one-dimensional (1-D) photonic crystal by...

متن کامل

Phase Properties of One-Dimensional Quaternary Photonic Crystals

In this paper, properties of reflection phase in one-dimensional quaternary photonic crystals combining dispersive meta-materials and positive index materials are investigated by transfer matrix method. Two omnidirectional band gaps are located in the band structure of considered structure. However, we limit our studies to the frequency range of the second wide band gap. We observe that the val...

متن کامل

Photonic band-gap structures

The analogy between electromagnetic wave propagation in multidimensionally periodic structures and electronwave propagation in real crystals has proven to be a fruitful one. Initial efforts were motivated by the prospect of a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden irrespective of the propagation direction in sp...

متن کامل

Band - Gap Engineering and Defect Modes in Photonic Crystals with Rotated Hexagonal Holes

During recent years, we have observed a rapidly growing interest in the design and fabrication of novel types of photonic-crystal structures possessing large absolute band gaps. The study of various geometries of three-dimensional photonic crystals and different ways to enlarge their absolute band gaps is a key issue in the physics of periodic dielectric structures, where different polarization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999